Derivatives
*** General rules of differentiation
In the following, u,v,w, are functions of x; a,b,c,n are constants[restricted if indicated]; e=2.71828... is the natural base of logarithm of u[i.e. the logarithm to the base e] where it is assumed that u>0 and all angles are in radians.
- dc/dx = 0
- d(cx)/dx = c
- d(cxn)/dx = ncx(n-1)
- d(u+v+w+...)/dx = du/dx + dv/dx + dw/dx + ...
- d(cu)/dx = c du/dx
- d(uv)/dx = u dv/dx + v du/dx
- d(uvw)/dx = uv dw/dx + uw dv/dx + vw du/dx
- d(u/v)/dx = {v(du/dx)-u(dv/dx)}/v2
- d(un)/dx = nu(n-1) du/dx
- dy/dx = (dy/du) (du/dx) [chain rule]
- dy/dx = 1/(dx/dy)
- dy/dx = (dy/du)/(dx/du)
*** Derivatives of trigonometric and inverse trigonometric functions
- d(sin u)/dx = cos u du/dx
- d(cos u)/dx = -sin u du/dx
- d(tan u)/dx = sec2 u du/dx
- d(cot u)/dx = -csc2 u du/dx
- d(sec u)/dx = sec u tan u du/dx
- d(csc u)/dx = -csc u cot u du/dx
- d(sin-1 u)/dx = 1/√(1-u2) du/dx [-π/2 < sin-1 u < π/2]
- d(cos-1 u)/dx = -1/√(1-u2) du/dx [0 < cos-1 u < π]
- d(tan-1 u)/dx = 1/(1+u2) du/dx [-π/2 < tan-1 u < π/2]
- d(cot-1 u)/dx = -1/(1+u2) du/dx [0 < cot-1 u < π]
- d(sec-1 u)/dx = 1/{abs(u) √(u2-1)} du/dx
= 1/{u √(u2-1)} du/dx [if 0 < sec-1 u < π/2]
= -1/{u √(u2-1)} du/dx [if π/2 < sec-1 u < π]
- d(csc-1 u)/dx = -1/{abs(u) √(u2-1)} du/dx
= -1/{u √(u2-1)} du/dx [if 0 < csc-1 u < π/2]
= 1/{u √(u2-1)} du/dx [if -π/2 < csc-1 u < 0]
*** Derivatives of exponential and logarithmic functions
- d(log_a u)/dx = log_a (e)/u du/dx, a is not 0,1
- d(ln u)/dx = d(log_e u)/dx = 1/u du/dx
- d(au)/dx = au ln a du/dx
- d(eu)/dx = eu du/dx
- d(uv)/dx = d(ev ln u)/dx = e(v ln u) d(v ln u)/dx = vu(v-1) du/dx + uv ln u dv/dx
*** Derivatives of hyperbolic and inverse hyperbolic functions
- d(sinh u)/dx = cosh u du/dx
- d(cosh u)/dx = sinh u du/dx
- d(tanh u)/dx = sech2 u du/dx
- d(coth u)/dx = -csch2 u du/dx
- d(sech u)/dx = -sech u tanh u du/dx
- d(csch u)/dx = -csch u coth u du/dx
- d(sinh-1 u)/dx = 1/√(u2+1) du/dx
- d(cosh-1 u)/dx = 1/√(u2-1) du/dx [if cosh u > 0, u > 1]
= -1/√(u2-1) du/dx [if cosh u < 0, u > 1]
- d(tanh-1 u)/dx = 1/(1-u2) du/dx [-1 < u < 1]
- d(coth-1 u)/dx = 1/(1-u2) du/dx [u > 1 or u < -1]
- d(sech-1 u)/dx = -1/{u √(1-u2)} du/dx [if sech u > 0, 0 < u < 1]
= 1/{u √(1-u2)} du/dx [if sech u < 0, 0 < u < 1]
- d(csch-1 u)/dx = -1/{abs(u) √(1+u2)} du/dx
= -1/{u √(1+u2)} du/dx [if u > 0]
= 1/{u √(1+u2)} du/dx [if u < 0]
*** Higher derivatives
- d(dy/dx)/dx = d2 y/dx2 = f"(x) = y"
- d(d2 y/dx2)/dx = d3 y/dx3 = f3'(x) = y3'
- d(d(n-1) y/dx(n-1))/dx = dn y/dxn = fn'(x) = yn'
*** Leibnitz's rule for higher derivatives of products
Let Dp stand for the operator dp/dxp so that Dp u = dp u/dxp = the pth derivative of y. Then
- Dn(uv) = uDn v + nC1 Du D(n-1)v + nC2 D2u D(n-2)v + ... + vDn u
- d2(uv)/dx2 = u d2 v/dx2 + 2 du/dx dv/dx + v d2 u/dx2
- d3(uv)/dx3 = u d3 v/dx3 + 3 du/dx d2 v/dx2 + 3 d2 u/dx2 dv/dx + v d3 u/dx3
Integration
*** General rules of integration
In the following, u,v,w, are functions of x; a,b,p,q,n are constants, restricted if indicated; e=2.71828... is the natural base of logarithm of u [i.e. the logarithm to the base e] where it is assumed that u>0 [in general, to extend formulas to cases u<0 as well, replace ln u by ln(abs(u))]; all angles are in radians; all constants of integration are omitted but implies.
- ∫ a dx = ax
- ∫ af(x) dx = a ∫ f(x) dx
- ∫ (u+v+w+...) dx = ∫ u dx + ∫ v dx + ∫ w dx + ...
- ∫ u dv = uv - ∫ v du (integration by parts)
- ∫ f(ax) dx = 1/a ∫ f(u) du
- ∫ F{f(x)} = ∫ F(u) dx/du du = ∫ F(u)/f'(x) du where u=f(x)
- ∫ un du = u(n+1)/(n+1), n is not -1 (for n=1 see 8.)
- ∫ du/u = ln u if u > 0 or ln(-u) if u < 0 = ln{abs(u)}
- ∫ eu du = eu
- ∫ au du = ∫ e(u ln a) du = e(u ln a)/ln a = au/ln a, a > 0, a is not 1
- ∫ sin u du = -cos u
- ∫ cos u du = sin u
- ∫ tan u du = ln sec u = -ln cos u
- ∫ cot u du = ln sin u
- ∫ sec u du = ln (sec u + tan u) = ln tan(u/2 + π/4)
- ∫ csc u du = ln (csc u - cot u) = ln tan (u/2)
- ∫ sec2 u du = tan u
- ∫ csc2 u du = -cot u
- ∫ tan2 u du = tan u - u
- ∫ cot2 u du = -cot u - u
- ∫ sin2 u du = u/2 - sin (2u)/4 = 1/2 (u - sin u cos u)
- ∫ cos2 u du = u/2 + sin(2u)/4 = 1/2 (u + sin u cos u)
- ∫ sec u tan u du = sec u
- ∫ csc u cot u du = -csc u
- ∫ sinh u du = cosh u
- ∫ cosh u du = sinh u
- ∫ tanh u du = ln cosh u
- ∫ coth u du = ln sinh u
- ∫ sech u du = sin-1 (tanh u) or 2 tan-1 (eu)
- ∫ csch u du = ln tanh (u/2) or -coth-1 (eu)
- ∫ sech2 u du = tanh u
- ∫ csch2 u du = -coth u
- ∫ tanh2 u du = u - tanh u
- ∫ coth2 u du = u - coth u
- ∫ sinh2 u du = sinh (2u)/4 - u/2 = 1/2 (sinh u cosh u - u)
- ∫ cosh2 u du = sinh (2u)/4 + u/2 = 1/2 (sinh u cosh u + u)
- ∫ sech u tanh u du = -sech u
- ∫ csch u coth u du = -csch u
- ∫ du/(u2 + a2) = 1/a tan-1 (u/a)
- ∫ du/(u2 - a2) = 1/(2a) ln {(u-a)/(u+a)} = -1/a coth-1 (u/a), u2 > a2
- ∫ du/(a2 - u2) = 1/(2a) ln {(a+u)/(a-u)} = 1/a tanh-1 (u/a), u2 < a2
- ∫ du/√(a2 - u2) = sin-1 (u/a)
- ∫ du/√(u2 + a2) = ln {u + √(u2 + a2)} or sinh-1 (u/a)
- ∫ du/√(u2 - a2) = ln {u + √(u2 - a2)}
- ∫ du/{u √(u2 - a2)} = 1/a sec-1 {abs(u/a)}
- ∫ du/{u √(u2 + a2)} = -1/a ln {(a+√(u2+a2))/u}
- ∫ du/{u √(a2 - u2)} = -1/a ln {(a+√(a2-u2))/u}
- ∫ f(n)' g dx = f(n-1)'g-f(n-2)'g'+f(n-3)'g"- ... (-1)n ∫ fg(n)' dx
*** Important Transformation
- ∫ F(ax+b) dx = 1/a ∫ F(u) du, where u=ax+b
- ∫ F{√(ax+b)} dx = 2/a ∫ uF(u) du, where u=√(ax+b)
- ∫ F{(ax+b)(1/n)} dx = n/a ∫ u(n-1) F(u) du, where u=(ax+b)(1/n)
- ∫ F{√(a2-x2)} dx = a ∫ F(a cos u) cos u du, where x=a sin u
- ∫ F{√(x2+a2)} dx = a ∫ F(a sec u) sec2 u du, where x=a tan u
- ∫ F{√(x2-a2)} dx = a ∫ F(a tan u) sec u tan u du,where x=a sec u
- ∫ F(e(ax)) dx = 1/a ∫ F(u)/u du, where u=e(ax)
- ∫ F(ln x) dx = ∫ F(u) eu du, where u=ln x
- ∫ F(sin-1 (x/a)) dx = a ∫ F(u) cos u du, where u=sin-1 (x/a) similar results apply for other inverse trigonometric functions.
- ∫ F(sin x, cos x) dx = 2 ∫ F(2u/(1+u2),(1-u2)/(1+u2)) du/(1+u2) where u=tan(x/2)
Trigonometric functions
*** Relationships between degrees and radians
- 1 radian = 180 deg/π = 57.29577 95130 8232... deg
- 1 deg = π/180 radians = 0.01745 32925 19943 29576 92... radians
*** Relationships among trigonometric functions
- tan A = sin A/cos A
- cot A = 1/tan A
- sec A = 1/cos A
- csc A = 1/sin A
- sin2 A + cos2 A = 1
- sec2 A - tan2 A = 1
- csc2 A - cot2 A = 1
*** Functions of negative angels
- sin(-A) = -sin A, same for other trigonometric functions
*** Addition Formulas
- sin(A+-B) = sin A cos B +- cos A sin B
- cos(A+-B) = cos A cos B -+ sin A sin B
- tan(A+-B) = (tan A +- tan B)/(1 -+ tan A tan B)
- cot(A+-B) = (cot A cot B -+ 1)/(cot B +- cot A)
*** Double angle formulas
- sin 2A = 2 sin A cos A
- cos 2A = cos2 A - sin2 A = 1 - 2 sin2 A = 2 cos2 A - 1
- tan 2A = 2 tan A / (1-tan2 A)
*** Half angle formulas
- sin(A/2) = √((1-cos A)/2) [if A/2 is in quadrant I or II]
= -√((1-cos A)/2) [if A/2 is in quadrant III or IV]
- cos(A/2) = √((1+cos A)/2) [if A/2 is in quadrant I or IV]
= -√((1+cos A)/2) [if A/2 is in quadrant II or III]
- tan(A/2) = √((1-cos A)/(1+cos A)) [if A/2 is in quadrant I or III]
= -√((1-cos A)/(1+cos A)) [if A/2 is in quadrant II or IV]
= sin A/(1+cos A) = (1-cos A)/sin A = csc A - cot A
*** Multiple angle formulas
- sin 3A = 3 sin A - 4 sin3 A
- cos 3A = 4 cos3 A - 3 cos A
- tan 3A = (3 tan A - tan3 A)/(1-3tan2 A)
- sin 4A = 4 sin A cos A - 8 sin3 A cos A
- cos 4A = 8 cos4 A - 8 cos2 A + 1
- tan 4A = (4 tan A - 4 tan3 A)/(1-6tan2 A + tan4 A)
- sin 5A = 5 sin A - 20 sin3 A + 16 sin5 A
- cos 5A = 16 cos5 A - 20 cos3 A + 5 cos A
- tan 5A = (tan5 A -10 tan3 A + 5 tan A)/(1-10 tan2 A + 5 tan4 A)
*** Powers of trigonometric functions
- sin2 A = 1/2 - 1/2 cos 2A
- cos2 A = 1/2 + 1/2 cos 2A
- sin3 A = 3/4 sin A - 1/4 sin 3A
- cos3 A = 3/4 cos A + 1/4 cos 3A
- sin4 A = 3/8 - 1/2 cos 2A + 1/8 cos 4A
- cos4 A = 3/8 + 1/2 cos 2A + 1/8 cos 4A
- sin5 A = 5/8 sin A - 5/16 sin 3A + 1/16 sin 5A
- cos5 A = 5/8 cos A + 5/16 cos 3A + 1/16 cos 5A
*** Sum, difference and product of trigonometric functions
- sin A + sin B = 2 sin{1/2 (A+B)} cos{1/2 (A-B)}
- sin A - sin B = 2 cos{1/2 (A+B)} sin{1/2 (A-B)}
- cos A + cos B = 2 cos{1/2 (A+B)} cos{1/2 (A-B)}
- cos A - cos B = 2 sin{1/2 (A+B)} sin{1/2 (B-A)}
- sin A sin B = 1/2 {cos(A-B) - cos(A+B)}
- cos A cos B = 1/2 {cos(A-B) + cos(A+B)}
- sin A cos B = 1/2 {sin(A-B) + sin(A+B)}
*** General formulas
- sin nA = sin A {(2 cos A)(n-1) - (n-2)C1 (2cos A)(n-3) + (n-3)C2 (2cos A)(n-5) - ... }
- cos nA = 1/2 {(2 cos A)n - n (2 cos A)(n-2) + n/2 (n-3)C1 (2cos A)(n-4) - n/3 (n-4)C2 (2cos A)(n-6) + ... }
- sin(2n-1) A = (-1)(n-1)/2(2n-2) {sin (2n-1)A - (2n-1)C1 sin (2n-3)A + ...(-1)(n-1) (2n-1)C(n-1) sin A }
- cos(2n-1) A = 1/2(2n-2) {cos (2n-1)A + (2n-1)C1 cos (2n-3)A + ... (2n-1)C(n-1) cos A }
- sin(2n) A = 1/2(2n) (2n)Cn + (-1)n/2(2n-1){cos 2nA -(2n)C1 cos (2n-2)A + ...(-1)(n-1) (2n)C(n-1) cos 2A }
- cos(2n) A = 1/2(2n) (2n)Cn + 1/2(2n-1){cos 2nA +(2n)C1 cos (2n-2)A + ... (2n)C(n-1) cos 2A }
*** Relationships between inverse trigonometric functions
- sin-1 x + cos-1 x = π/2
- tan-1 x + cot-1 x = π/2
- sec-1 x + csc-1 x = π/2
- csc-1 x = sin-1 (1/x)
- sec-1 x = cos-1 (1/x)
- cot-1 x = tan-1 (1/x)
- sin-1 (-x) = -sin-1 x
- cos-1 (-x) = π - cos-1 x
- tan-1 (-x) = -tan-1 x
- cot-1 (-x) = π - cot-1 x
- sec-1 (-x) = π - sec-1 x
- csc-1 (-x) = -csc-1 x
*** Relationships between sides and angles of a plane triangle
- Laws of sines : a/sin A = b/sin B = c/sin C
- Laws of cosines : c2 = a2 + b2 +- 2ab cos C
- Laws of tangents : (a+b)/(a-b) = tan {1/2 (A+B)}/tan{1/2 (A-B)}
- sin A = 2/(bc) √{s(s-a)(s-b)(s-c)}, where s=1/2 (a+b+c)
*** Definition of hyperbolic functions
- sinh x = {ex - e(-x)} / 2
- cosh x = {ex + e(-x)} / 2
- tanh x = {ex - e(-x)} / {ex + e(-x)}
- coth x = {ex + e(-x)} / {ex - e(-x)}
- sech x = 2 / {ex + e(-x)}
- csch x = 2 / {ex - e(-x)}
Geometric
*** 2-Dimensional System
- Rectangle of length b and width a
Area = a b; Perimeter = 2a + 2b
- Parallelogram of altitude h and base b (sides a,b)
Area = b h = a b sin θ; Perimeter = 2a + 2b
- Triangle of altitude h and base b (sides a,b,c)
Area = b h / 2 = a b sin(θ) / 2 = √{s (s-a) (s-b) (s-c)} where s = (a+b+c)/2 = semiperimeter Perimeter = a+b+c
- Trapezoid of altitude h and parallel sides a and (sides a,b)
Area = h (a+b) / 2 Perimeter = a + b + h(1/sin(θ)+1/sin(φ)) = a+b+h(csc(θ)+csc(φ))
- Regular polygon of n sides each of length b
Area = n b2 cot(π/n) / 4 = n b2 cos(π/n) / {4 sin(π/n)} Perimeter = n b
- Circle of radius r
Area = π r2; Perimeter = 2 π r
- Sector of circle of radius r
Area = r2 θ / 2 [θ in radian]; Arc length s = r θ
- Radius of circle inscribed in a triangle of sides a,b,c
r = √{s (s-a) (s-b) (s-c)}/s where s = (a+b+c)/2 = semiperimeter
- Radius of circle circumscribing a triangle of sides a,b,c
R = abc / [4 √{s (s-a) (s-b) (s-c)}] where s = (a+b+c)/2 = semiperimeter
- Regular polygon of n sides inscribed in a circle of radius r
Area = n r2 sin(2π/n)/2 = n r2 sin(360 deg/n)/2 Perimeter = 2nr sin(π/n) = 2nr sin(180 deg/n)
- Regular polygon of n sides circumscribing a circle of radius r
Area = n r2 tan(π/n); Perimeter = 2nr tan(π/n)
- Segment of circle of radius r
Area = r2 (θ-sin(θ))/2
- Ellipse of semi-major axis a and semi-minor axis b
Area = π a b Perimeter = 4a ∫_[from 0 to π/2] √(1-k2 sin2 (θ) d θ = 2 π √{(a2 + b2)/2} [approximately] where k=√(a2+b2)/a
- Segment of a parabola
Area = 2 a b / 3 Arc length = √(b2+16a2)/2 + b2 ln[{4a+√(b2+16a2)}/b] / 8a
*** 3-Dimensional System
- Rectangular parallelepiped of length a, height l, width c
Volume = abc; Surface area = 2(ab+ac+bc)
- Parallelepiped of cross-sectional area A and height h (sides a,b,c)
Volume = Ah = abc sin(θ)
- Sphere of radius r
Volume = 4 π r3 / 3; Surface area = 4 π r2
- Right circular cylinder of radius r and height h
Volume = π r2 h; Lateral surface area = 2 π r h
- Circular cylinder of radius r and slant height l (right height h)
Volume = π r2 h = π r2 l sin(θ) Lateral surface area = 2 π r l = 2 π r h/sin(θ) = 2 π r h csc(θ)
- Cylinder of cross-sectional area A and slant height l
Volume = Ah = A l sin(θ) Lateral surface area = p l = p h/sin(θ) = p h csc(θ) where p = perimeter of arbitrary shape of top or bottom
- Right circular cone of radius r and height h (slant height l)
Volume = π r2 h/3 Lateral surface area = π r2 √(r2+h2) = π r l
- Pyramid of base area A and height h
Volume = A h / 3
- Sphere cap of radius r and height h
Volume = π h2 (3r-h) / 3; Surface area = 2 π r h
- Frustrum of right circular cone of radii a,b and height h (slant height l, Cut taper shape)
Volume = π h (a2 + ab + b2) / 3 Lateral surface area = π (a+b) √(h2 + (b-a)2) = π (a+b) l
- Spehrical triangle of angles A,B,C on sphere of radius r
Area of triangle ABC = (A+B+C-π) r2
- Torus of inner radius a and outer radius b (Donuts shape)
Volume = π2 (a+b) (b-a)2 / 4; Surface area = π2 (b2-a2)
- Ellipsoid of semi-axes a,b,c (Rugby ball shape)
Volume = 4 π a b c / 3
- Paraboloid of revolution (height a, bottom radius b, Umbrella shape)
Volume = π b2 a / 2
Miscellaneous
*** Solution of algebraic equations
- Quadratic equation: ax2 + bx + c = 0
x={-b+-√(b2-4ac)}/2a
- Cubic equation: x3 + a1 x2 + a2 x + a3 = 0
x1=S+T-a1 / 3
x2=-(S+T)/2 - a1/3 + i √(3) (S-T) / 2
x3=-(S+T)/2 - a1/3 - i √(3) (S-T) / 2
where
Q = (3a2-a12)/9,
R = (9 a1 a2 - 27 a3 - 2 a13) / 54
S={R+√(Q3+R2)}1/3, T={R-√(Q3+R2)}1/3
D=Q3+R2
if D<0
x1 = 2 √(-Q) cos (θ/3) - a1/3
x2 = 2 √(-Q) cos (θ/3+120 deg) - a1/3
x3 = 2 √(-Q) cos (θ/3+240 deg) - a1/3
where cos(θ)=R/√(-Q3)
- Quartic equation: x4 + a1 x3 + a2 x2 + a3 x + a4 = 0
Let y1 be a real root of the cubic equation
y3 - a2 y2 + (a1 a3 - 4a4)y + (4 a2 a4 -a32 -a12 a4) = 0
The 4 roots of
z2 + {a1 +- √(a12 - 4a2 + 4y1)} z/2 + {y1 -+ √(y12-4a4)}/2 = 0
*** Taylor series
- f(x) = f(a) + f'(a)(x-a) + {f"(a)(x-a)2}/2! + ... + {f(n-1)(a)(x-a)(n-1)}/(n-1)! + Rn